Improved Approximation Algorithms for Balanced Partitioning Problems

نویسندگان

  • Harald Räcke
  • Richard Stotz
چکیده

We present approximation algorithms for balanced partitioning problems. These problems are notoriously hard and we present new bicriteria approximation algorithms, that approximate the optimal cost and relax the balance constraint. In the first scenario, we consider Min-Max k-Partitioning, the problem of dividing a graph into k equal-sized parts while minimizing the maximum cost of edges cut by a single part. Our approximation algorithm relaxes the size of the parts by (1 + ε) and approximates the optimal cost by O(log1.5 n log logn), for every 0 < ε < 1. This is the first nontrivial algorithm for this problem that relaxes the balance constraint by less than 2. In the second scenario, we consider strategies to find a minimum-cost mapping of a graph of processes to a hierarchical network with identical processors at the leaves. This Hierarchical Graph Partitioning problem has been studied recently by Hajiaghayi et al. who presented an (O(logn), (1 + ε)(h + 1)) approximation algorithm for constant network heights h. We use spreading metrics to give an improved (O(logn), (1 + ε)h) approximation algorithm that runs in polynomial time for arbitrary network heights. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partitioning graphs into balanced components

We consider the k-balanced partitioning problem, where the goal is to partition the vertices of an input graph G into k equally sized components, while minimizing the total weight of the edges connecting different components. We allow k to be part of the input and denote the cardinality of the vertex set by n. This problem is a natural and important generalization of well-known graph partitioni...

متن کامل

Approximation Algorithms for Semi-random Graph Partitioning Problems

In this paper, we propose and study a new semi-random model for graph partitioning problems. We believe that it captures many properties of real–world instances. The model is more flexible than the semi-random model of Feige and Kilian and planted random model of Bui, Chaudhuri, Leighton and Sipser. We develop a general framework for solving semi-random instances and apply it to several problem...

متن کامل

Minmax Tree Cover in the Euclidean Space

Let G = (V,E) be an edge-weighted graph, and let w(H) denote the sum of the weights of the edges in a subgraph H of G. Given a positive integer k, the balanced tree partitioning problem requires to cover all vertices in V by a set T of k trees of the graph so that the ratio α of maxT∈T w(T ) to w(T ∗)/k is minimized, where T ∗ denotes a minimum spanning tree of G. The problem has been used as a...

متن کامل

Constant Factor Lasserre Integrality Gaps for Graph Partitioning Problems

Partitioning the vertices of a graph into two roughly equal parts while minimizing the number of edges crossing the cut is a fundamental problem (called Balanced Separator) that arises in many settings. For this problem, and variants such as the Uniform Sparsest Cut problem where the goal is to minimize the fraction of pairs on opposite sides of the cut that are connected by an edge, there are ...

متن کامل

A Approximation Algorithms for Min-Max Generalization Problems

We provide improved approximation algorithms for the min-max generalization problems considered by Du, Eppstein, Goodrich, and Lueker [Du et al. 2009]. Generalization is widely used in privacy-preserving data mining and can also be viewed as a natural way of compressing a dataset. In min-max generalization problems, the input consists of data items with weights and a lower bound wlb, and the go...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016